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Design and control of architecture of polymer are important keys to develop novel polymers. Combina-
tion of classic template polymerization and recent controlled/living radical polymerization has enabled
the simple and convenient synthesis of well-defined methacrylate type ladder-like polymer and cyclic
electrolytic oligomer. In this manuscript, the basic concept and specific features of template polymeriza-
tion with atom transfer radical polymerization are described from the viewpoint of synthesis of ladder-
like polymer and oligomer.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Template polymerization of vinyl monomer is known as a classic
approach to control molecular weight and molecular weight distri-
bution. Its concept was firstly introduced by Szwarc with the term
of ‘‘replica polymerization’’ [1]. By this method, the product is
expected to be ‘‘a replica’’ of the template molecule. In other words,
shape, molecular weight and molecular weight distribution of the
product should be similar to those of the template molecule. Actu-
ally, in Mother Nature, many organic compounds, such as DNA,
RNA, etc., are finely synthesized by template methods.

Radical polymerization is one of the major methods to synthe-
size vinyl polymers. The advantage of radical polymerization is its
convenience. The disadvantage is bad control of the molecular
weight and molecular weight distribution. The combination of
the concepts of template polymerization and radical polymeriza-
tion was expected for easy and fine control of polymer architecture.
Based on this concept, vinyl monomers were polymerized with
many templates by radical polymerization [2–11]. Generally, tem-
plate polymerization of vinyl group is classified into two mecha-
nisms, pick-up mechanism and zip mechanism [2]. In the case of
‘‘pick-up mechanism’’, monomer freely exists in whole system
before polymerization. Polymerization starts with free monomer
in solution. When oligomer is formed in solution, it is strongly
connected to the template, then polymerization proceeds on the
template. Not only organic polymer, but also inorganic and metallic
nanoparticles and nanowires can be used as the templates. Polymer
All rights reserved.
capsules [12] and polymer nanotubes [13] were finely synthesized
by pick-up mechanism with gold nanoparticles and silicon/silica
core/shell nanowires, respectively, as the templates. In the case of
‘‘zip mechanism’’, monomer is connected to the template in ad-
vance of polymerization by strong bonds such as covalent bond,
ionic bond, hydrogen bond, etc. The template molecule, in which
many vinyl units are connected, is called ‘‘multivinyl monomer
(MVM)’’. Fig. 1 shows the synthetic concept of template polymeri-
zation of vinyl polymer with zip mechanism. The connected vinyl
groups are polymerized on template. When linear polymer is
used as the template, the product will be a ladder-like polymer.

Kammerer and Jung polymerized the MVM, in which acrylic
groups were attached to p-cresol oligomer, with azobisisobutylo-
nitrile (AIBN), and obtained ladder-like oligomer. Interestingly, the
degree of polymerization of a daughter sequence (an acrylate se-
quence) completely agreed to that of a parent sequence (a template
sequence) [8]. Jantas et al. have successfully polymerized acrylic
type and methacrylic type MVMs with poly(vinyl alcohol) (PVA)
and poly(2-hydroxyethyl methacrylate) (PHEMA) as the templates,
and found that the dilution of concentration of MVM reduced the
possibility of intermolecular polymerization (crossliking) [9–11].
They also observed high glass transition temperature (Tg), which
was a clear evidence of ladder-like structure, for polymerized MVM
[14]. However, the bad control of radical concentration and random
initiation in the MVM owing to the radical polymerization hindered
the formation of a very regular ladder-like polymer. In other words,
the product is a mixture of ladder-like polymer and its precursor
MVM. Since the molecular weight of ladder-like polymer and its pre-
cursor MVM was very similar, it is difficult to purify the product.
Additionally, gelation during polymerization was hardly hindered.
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Fig. 1. Concept of template polymerization of multivinyl monomer with linear poly-
mer as a template.
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Recently, progress in control/living radical polymerization en-
abled easy control of architecture, molecular weight and molecular
weight distribution of polymer [15–33]. The most important fea-
tures of controlled/radical polymerization are livingness of radical
and the strict control of radical concentration during polymeriza-
tion. Again, bad control of radical concentration on template poly-
merization was a major problem of template polymerization. In the
case of pick-up mechanism for polymer capsules and polymer
nanowires, the thicknesses of polymer layer were finely controlled
by atom transfer radical polymerization (ATRP) [12,13]. An intro-
duction of controlled/living radical polymerization technique to
template polymerization of MVM improved the template polymeri-
zation. Additionally, homogeneous propagation of polymerization
simplifies the purification of product.

Taking account of the concept of template polymerization, low
molecular weight molecules can be used as the templates. Novel
product having unique architecture will be finely synthesized by
template polymerization with low molecular weight molecules.
For example, cyclodextrins [CDs] are cyclic compounds having
many hydroxyl groups. It is easy to obtain MVM from CD. The num-
ber of hydroxyl group of a- and b-CD is 18 and 24, the products
should be oligomers. Fig. 2 shows the concept of oligomer synthesis
by template polymerization with CD. Template polymerization will
be a fine approach to synthesize oligomers. In this manuscript, the
template polymerization of two types of template, PHEMA and CD,
by copper-mediated ATRP, which is a type of controlled/living
radical polymerization, is described.
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Fig. 3. Template polymerization of poly(2-methacryloyloxyethyl methacrylate)
(MVMPHEMA).
2. Template polymerization with linear polymer as
a template and its product, ladder-like polymer

As described above, the template polymerization of MVM with
long linear polymer as the template provides ladder-like polymer
(Fig. 1). In this section, the general strategy of template polymeriza-
tion on ATRP, kinetics of polymerization and thermal properties of
polymerized products are described.
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Fig. 2. Concept of template polymerization of multiv
2.1. Template polymerization and kinetics

There are three categories for controlled/living radical polymeri-
zation, which are ATRP [15–22], stable free radical polymerization
(SFRP) [23–28] and reversible addition–fragmentation transfer
(RAFT) polymerization [29–33]. These three polymerization tech-
niques are theoretically available for template polymerization.
The suitable polymerization method depends on the vinyl group
of MVM. In the case of methacryloyl type MVM, ATRP is the suitable
polymerization method. Fig. 3 shows chemical structures of
MVM with PHEMA (poly(2-methacryloyloxyethyl methacrylate)
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template, MVMPHEMA) and its polymerized product. Methacryloyl
type monomers, such as methyl methacrylate, etc., are polymerized
by copper-mediated ATRP under mild conditions [23–25]. Elevation
of polymerization temperature drastically increases the possibility
of gelation because the mobility of vinyl group attached to template
is increased. Low polymerization temperature is more preferable
for template polymerization.

Again, the most important advantage of controlled/living radical
polymerization for template polymerization is the fine control of
radical concentration in polymerization system. The vinyl groups
in the MVMs should be connected to one sequence by template
polymerization. Thus, the theoretical molar ratio of an initiator to
MVM is 1:1. The position, where the initiator initially reacts, in
the MVM and the polymerization direction cannot be controlled.
To neglect the initiating position, a bifunctional initiator is useful.
Polymerization proceeds toward both ends of the backbone at the
same time from the bifunctional initiator. For example, a,a0-
dibromo-p-xylene (DBX) was an available initiator for the template
polymerization of MVMPHEMA by copper-mediated ATRP [34].

When the template polymerization successfully proceeds, hy-
drodynamic diameters of MVM and its products should agree. In
other words, GPC profiles of MVM and its products should agree.
Fig. 4 shows GPC profiles of MVMPHEMA with Mn¼ 2.34�104 and
its products polymerized at 0.31 wt% at 30 �C [34]. The shape and
the position of these peaks were very similar, indicating that poly-
merization was completely limited in the molecule of MVMPHEMA.
The maximum conversion by ATRP, 77.8%, was much larger than
that for the product of MVMPHEMA with Mn¼ 2.69�104 polymer-
ized with AIBN at 75 �C, 40% [35]. Here, it should be noted that
the concentration of MVM for ATRP was 0.31 wt%. The lower the
concentration of MVM, the lower the possibility of intermolecular
polymerization. Consequently, template polymerization proceeds
successfully in dilute solution by ATRP.

The conversion of vinyl group was determined by FT-IR, instead
of 1H NMR in solution. The quantitativity of resonance area of 1H
NMR spectroscopy was lost after polymerization. When the poly-
merization proceeds along the backbone, the product will be a
ladder-like polymer. Hydrogen in the crosspiece sequence in the
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Fig. 4. The profiles of gel permeation chromatography (GPC) of poly(2-methacryloyl-
oxyethyl methacrylate) (MVMPHEMA) with Mn¼ 2.34�104 and the polymerized prod-
ucts, PMVM4-4 and PMVM4-5, in a tetrahydrofurane/water mixture (water content,
11 vol%) at 30 �C with [MVMPHEMA]:[a,a0-dibromo-p-xylene]:[CuBr]:[tris(2-dimethyl-
aminoethyl)amine]¼ 1:1.2:2.4:4.8. Reaction time of PMVM4-4 and PMVM4-5 was
2.0 and 16 h, respectively [34].
ladder polymer was not quantitatively detected by 1H NMR spec-
troscopy in solution because of the drastic decrease in the mobility
of crosspiece sequence. In fact, after polymerization, the ratio of
whole resonance area of vinyl group (CH2]) at 6.08 and
5.56 ppm to that of ethylene (–CH2–CH2–) at 4.26 and 4.11 ppm in
backbone of template increased from 0.42 to 1.44, indicating that
the 1H NMR spectra of the polymerized products were not quanti-
tative [34]. Therefore, FT-IR measurement was an important
method to determine the conversion of vinyl group.

2.2. Propagation of polymerization in molecule and kinetics
of template polymerization

In the case of template polymerization, vinyl groups heteroge-
neously exist in whole system. In other words, vinyl groups are
highly concentrated around the template molecule. The heterogene-
ity of vinyl group does not disturb the livingness of ATRP but en-
hanced the polymerization rate. Fig. 5 shows the first order kinetic
plot of polymerization of MVMPHEMA with 0.31 wt% of polymer con-
centration at 25 �C in the 1,4-dioxane/water mixture [34,36]. The
induction time of 0.25 h was observed before the proceeding of
polymerization. In a range from 0.25 to 1.5 h, the plots showed
good linearity, indicating that the livingness of ATRP was kept.
Over 1.5 h, the conversion was saturated, and the polymerization
was completed. An apparent polymerization rate constant, kapp

(¼ k[M]¼ 5.0�10�5 s�1), obtained from the slope from 0.25 to
1.5 h, was very close to those of methyl methacrylate on copper-me-
diated ATRP with Br groups (3.52�10�5 and 3.78� 10�5 s�1) in bulk
at 80 �C [37] and in ethylene carbonate with 50 wt% of MMA at 60 �C
[38], respectively. Here k is the polymerization rate constant, and
[M] is the concentration of vinyl group around radical. The coincide
of kapp value of template polymerization and ATRP of MMA indicates
that the vinyl groups were highly concentrated in MVM.

There is a big question for template polymerization, which is
whether the polymerization proceeds along backbone of template
molecule. When the template is a linear polymer chain with soft
sequence, the backbone forms globule. It may be possible to prop-
agate polymerization at random in globule. The answer is ‘‘poly-
merization proceeded along the backbone of template’’. This can
be explained from conversion of vinyl group and kinetic analysis.
The first order kinetic plots of a,u-styryl terminated poly(2-meth-
acryloyloxyethyl methacrylate) (St–MVMPHEMA–St) is also shown
in Fig. 5. Fig. 6 shows the chemical structure of St–MVMPHEMA–St.
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Fig. 5. The first order kinetic plot for copper-mediated atom transfer radical polymer-
ization of poly(2-methacryloyloxyethyl methacrylate) (MVMPHEMA with Mn¼ 2.34�
104, triangle) and a,u-styryl terminated poly(2-methacryloyloxyethyl methacrylate)
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Fig. 6. Chemical structure of a,u-styryl terminated poly(2-methacryloyloxyethyl
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Since the cleavage temperature of Br–styryl bond, >90 �C, is much
higher than that of Br–methacrylate bond by copper-mediated
ATRP, polymerization of methacrylate is terminated with styryl
group when the polymerization is carried out at lower than
30 �C. If the polymerization proceeds along the backbone, the
conversions of vinyl group and kinetic plots of MVMPHEMA and
St–MVMPHEMA–St containing styryl groups will be similar. If
the polymerization proceeds at random in the globule, the poly-
merization of St–MVMPHEMA–St will terminate earlier than that
of MVMPHEMA. The conversions of vinyl group of MVMPHEMA and
St–MVMPHEMA–St were 77.8 and 85.3 mol%, the radical in
St–MVMPHEMA–St did not attack styryl groups until the late stage
of polymerization. The slops in a range from 0.25 to 1.0 h, which
correspond to apparent polymerization rate constants, were very
similar. Both plots were saturated at similar time (from 1.0 to
1.5 h), the polymerization in both MVMs was terminated around
1.0–1.5 h. Polymerization with styryl group did not occur until the
late stage of polymerization. In conclusion, the polymerization
proceeded along the backbone of template molecule.
O
O

O
O

2.3. Properties of polymerized product

The unique property of ladder-like polymer is that its Tg is much
higher than its linear analogue. Theoretically and experimentally,
the dense connection between sequences in the molecule results
in high thermal stability [39,40]. When MVMPHEMA was polymer-
ized by free radical polymerization with AIBN, Tg of product was
not detected below 270 �C [14]. Fig. 7 shows differential scanning
calorimetry profiles of the polymerized product of MVMPHEMA by
ATRP. Tg of product polymerized with ATRP reached 210 �C [34].
These values are remarkably higher than other poly(methacry-
late)s. In general, the Tg values of poly(methacrylate)s are mostly
in a range from ca. 20 to 120 �C; Tg of poly(4-cyanophenyl meth-
acrylate) is 155 �C. MVMPHEMA used for ATRP had lower degree of
esterification with methacryloyl group than that used for free
radical polymerization. The lower Tg of the product polymerized
by ATRP would be due to the lower degree of crosspiece. Therefore,
Tg of the product will be controlled by varying the conversion of vi-
nyl group. Since the ladder-like polymers synthesized by template
polymerization of MVMPHEMA were soluble in organic solvents,
such as toluene, tetrahydrofurane, acetone, chloroform, etc., they
will be applied to coating technology, etc.
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Fig. 8. Chemical structures of methacrylate type multivinyl monomer with b-cyclo-
dextrin, b-MVM1 and b-MVM2.
3. Template polymerization with cyclodextrins

CDs are stereochemically pure macrocyclic compounds. Since
they contain many hydroxyl groups, it is easy to introduce meth-
acryloyl groups into CD. In other words, MVMs are easily obtained
from CDs. As described above, well-defined methacrylic acid oligo-
mers were finely synthesized by using CDs as templates. In this sec-
tion, the specific features of template polymerization of MVM with
CD templates are described.
3.1. Template polymerization and kinetics

Methacrylate type MVMs with b-CD, b-MVM1 and b-MVM2
(Fig. 8) are easily synthesized by esterification of hydroxyl groups
of b-CD with methacrylic anhydride [41,42]. To complete pre-ester-
ification of b-CD, carbonic anhydrides, instead of carbonic chlo-
rides, were generally used [42,43]. Fig. 9 shows the concept of
template polymerization of MVM with CD as the template. In
b-CD, 7 and 14 hydroxyl groups exist on the primary and secondary
hydroxyl group sides, respectively. When the template polymeriza-
tion is carried out for MVM with b-CD, two types of polymerized
sequence with 7 and 14 degrees of polymerization (DP), which
correspond to the number of hydroxyl group on the primary and
secondary hydroxyl group sides, respectively, are expected. Then,
well-defined methacrylic acid (MAA) oligomers with finely con-
trolled DP will be obtained by hydrolysis of polymerized product.
Free radical polymerization of b-MVM1 and b-MVM2 with AIBN
and a redox initiator caused the gelation of the polymerization so-
lution on late stage of polymerization [44]. The DP of MAA oligomer
detached from the product was larger than the number of vinyl
group on the secondary hydroxyl group side, and widely dispersed.
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Consequently, polymerization was not limited in the MVM mole-
cule by free radical polymerization. In contrast, by copper-mediated
ATRP of b-MVM1, which contained vinyl groups on only secondary
hydroxyl group side, with methyl 2-bromopropionate, which was
a single functional initiator, the solution did not gel. By hydrolysis,
single MAA oligomer was obtained. The DP of oligomer and the
number of vinyl group on the secondary hydroxyl group side
agreed well. Template polymerization was well controlled by
ATRP in the case of MVMs with b-CD [44].

In b-MVM2, vinyl groups on the primary and secondary hy-
droxyl group sides are separated by CD scaffold. Thus, two indepen-
dent reaction fields exist in the same molecule. When the molar
ratio of initiator to b-MVM2 was 2:1, template polymerization indi-
vidually proceeded in two fields in the same molecule. As a result,
two types of MAA oligomer with DP¼ 7 and 14 were obtained from
the same molecule [45]. Fig. 10 shows the GPC profile of hydrolyzed
product obtained from the polymerized product of b-MVM2 [45].
As can be seen, the GPC profile was bimodal, the peaks corre-
sponded to MAA oligomers with DP¼ 7 and 14. Therefore, in the
case of CD template, it is possible to form the plural template fields
in the same molecule.

Copper-mediated ATRP of template polymerization with CD
template was living, as well as the polymerization with linear poly-
mer as the template. Fig. 11 shows the first order kinetic plots of
template polymerization of b-MVM2 at 25 and 50 �C. At 50 �C,
polymerization proceeded in a living manner until 1.0 h, then con-
version was saturated, indicating that the polymerization was com-
pleted. The slope corresponding kapp was very close to those of bulk
and the template polymerization with linear polymer. Thus, the liv-
ingness of ATRP on the template polymerization was kept even in
the small molecule as the template. At 25 �C, the slope of kinetic
plot was changed at 1.0 h. The change at 1.0 h indicated the comple-
tion of polymerization on the primary hydroxyl group side and the
propagation of polymerization on the secondary hydroxyl group
side. The polymerization at 50 �C was too fast to detect the change
of slope. In conclusion, the template polymerization proceeded in
each template field, even when the plural template fields existed
in the same molecule.
Since the shape of template field is cyclic, the radical proceeded
along the cyclic CD rim and came back to the initiated position.
When the initiator had the functional group, which may react
with activated radical or deactivated state, it is possible to form cy-
clic the polymerized sequence by connection of initiated and initi-
ating groups [46,47]. Radical transfer by using 1,3-dibromobutane
as the initiator was investigated. 1H NMR and MALDI-TOF mass
spectrometric analysis indicated that the closing ring reaction



Fig. 12. Calculated arrangements of methacryloyl group of b-MVM2 by MM2. Black
particle: C; blue particle: H; red particle: O. (a) The primary hydroxyl group side
without guest, (b) the secondary hydroxyl group side without guest, (c) the primary
hydroxyl group side with docosane, (d) the secondary hydroxyl group side with
docosane [47], (e) the primary hydroxyl group side with toluene, and (f) the secondary
hydroxyl group side with toluene.

y = 0.4093x + 0.1301 

y = 0.0877x + 0.0245

y = 0.0663x + 0.0292

0

0.1

0.2

0.3

0.4

0.5

20 4 6 8
Reaction time (h)

C
o

n
v
e
r
s
i
o

n
 
o

f
 
m

e
t
h

a
c
r
y
l
o

y
l
 
g

r
o

u
p

 
(
m

o
l
%

)

0

0.2

0.4

0.6

0.8

1

l
n

(
[
M

]
0
/
[
M

]
)

Fig. 11. First order kinetic plots for the copper-mediate atom transfer radical polymer-
ization of methacryloyl group in a methanol/water mixture (water content, 10 vol%).
[b-MVM2]¼ 3.96 mM; [Initiator]¼ [CuBr]¼ 7.92 mM; [bipyridyl]¼ [toluene]¼ 19.81 mM.
Closed circle: conversion at 25 �C; open circle: �ln[M]0/[M] at 25 �C; closed triangle:
conversion at 50 �C; open triangle: �ln[M]0/[M] at 50 �C [45].
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preferentially occurred on the secondary hydroxyl group side than
on the primary hydroxyl group side [47]. Though the reaction
mechanism is unclear, the major advantage of using radical transfer
is no reagent was required for the closing ring. Further investiga-
tion on mechanism of radical transfer is required. Cyclic MAA olig-
omer with DP¼ 14 showed an inclusion ability of methylene blue in
methanol [48] as well as CDs. Cyclic MAA oligomer was a polyelec-
trolyte, therefore it will be a novel pH sensitive host compound.

3.2. Effect of guest on template polymerization

The most important factor of template polymerization is the ar-
rangement of vinyl group in the template molecule. In the case of
template polymerization with CD, guest molecule to CD strongly in-
fluences the arrangement of vinyl group. In other words, DP of MAA
oligomer is controlled by guest [49]. Fig. 12 shows the MM2 images
of primary and secondary hydroxyl group sides of b-MVM2 with
and without guests. When no guest was added, the arrangement
of vinyl group was disordered. Lack of guest resulted in the inclu-
sion of methacryloyl groups into hydrophobic CD cavity. Fig. 13
shows GPC profiles of MMA oligomers obtained from the product
of b-MVM2 polymerized with and without the guests [49]. Without
guest, template polymerization did not proceed; MAA oligomer
was not obtained. When toluene was the guest, vinyl groups on
both sides were well arranged along the rim of CD ring. As a result,
two types of MMA oligomer with DP¼ 7 and 14 were obtained.
When long alkyl compound, docosane, was the guest, all vinyl
groups on the primary hydroxyl group side and half of vinyl groups
on the secondary hydroxyl group side were well arranged around
docosane; single type of MAA oligomer with DP¼ 7 was selectively
obtained from both b-MVM1 and b-MVM2. Therefore, the arrange-
ment of vinyl groups in the template is one of the important factors
to control template polymerization.

4. Conclusion

Combination of ATRP, which is one method of controlled/living
radical polymerization, and template polymerization of multivinyl
monomer was described. The important features of ATRP, which
are a good control of radical concentration and the livingness of
radical, resulted in (1) higher conversion of vinyl group without ge-
lation and (2) homogeneous structure of the products. In the case of
template polymerization, ATRP proceeded in a living manner; the
apparent polymerization rates of ATRP were very close to that of
the ATRP in bulk. These indicated that the vinyl groups were highly
concentrated in template molecules. The architecture of product is
highly governed by the architecture of template molecule. When
linear polymer was used as a template of multivinyl monomer,
the ladder-like polymers were synthesized with the bifunctional
initiator. Styryl group, which acts as an inhibitor in this work, intro-
duced into the ends of polymer chain did not influence the kinetics
for ATRP of multivinyl monomer. Template polymerization pro-
ceeded toward the chain ends along the backbone of multivinyl
monomer. When cyclodextrins were used as the templates, well-
defined oligomers were selectively synthesized. Since the template
field was divided into two fields by cyclodextrin ring, two types of
oligomer were individually synthesized in the same molecule.
Additionally, guest molecule included into cyclodextrin ring during
polymerization controlled the arrangement of vinyl group in the
polymerization fields. As a result, the degree of polymerization of
oligomer was finely controlled by the guest. The macrocyclic
structure of cyclodextrin had enabled the easy synthesis of cyclic
oligomer with controlled degree of polymerization. Ladder-like
polymers and well-defined oligomers will be useful highly
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obtained by hydrolysis of polymerized products of b-MVM1 and b-MVM2 with guests.
b1 and b2 correspond to multivinyl monomers, b-MVM1 and b-MVM2, respectively.
None indicates no guest was used. Doc, Tol, Xy, DBz and PDP correspond the guests:
docosane, toluene, p-xylene, dodecylbenzene and pentadecyl phenol, respectively [49].
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functional materials. There are many molecules which have inter-
esting architectures. The polymers having useful and interesting
architecture will be synthesized from other molecules by the com-
bination of template polymerization and controlled/living radical
polymerization.
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